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Abstract

Genome-enhanced genotypic evaluations are becoming popular in several livestock species. For this purpose, the
combination of the pedigree-based relationship matrix with a genomic similarities matrix between individuals is a common
approach. However, the weight placed on each matrix has been so far established with ad hoc procedures, without formal
estimation thereof. In addition, when using marker- and pedigree-based relationship matrices together, the resulting
combined relationship matrix needs to be adjusted to the same scale in reference to the base population. This study
proposes a semi-parametric Bayesian method for combining marker- and pedigree-based information on genome-enabled
predictions. A kernel matrix from a reproducing kernel Hilbert spaces regression model was used to combine genomic and
genealogical information in a semi-parametric scenario, avoiding inversion and adjustment complications. In addition, the
weights on marker- versus pedigree-based information were inferred from a Bayesian model with Markov chain Monte
Carlo. The proposed method was assessed involving a large number of SNPs and a large reference population. Five
phenotypes, including production and type traits of dairy cattle were evaluated. The reliability of the genome-based
predictions was assessed using the correlation, regression coefficient and mean squared error between the predicted and
observed values. The results indicated that when a larger weight was given to the pedigree-based relationship matrix the
correlation coefficient was lower than in situations where more weight was given to genomic information. Importantly, the
posterior means of the inferred weight were near the maximum of 1. The behavior of the regression coefficient and the
mean squared error was similar to the performance of the correlation, that is, more weight to the genomic information
provided a regression coefficient closer to one and a smaller mean squared error. Our results also indicated a greater
accuracy of genomic predictions when using a large reference population.
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Introduction

Genomic selection refers to artificial selection decisions made

using breeding values predicted from dense marker data [1].

These predicted breeding values are usually called direct genomic

values (DGV) when only marker information is used, or genomic

estimated breeding values (GEBV) when they are combined with

pedigree information, often a posteriori in a blending procedure, or

resulting from a single step method [2]. Different approaches may

be used as genome-enhanced prediction methods for predicting

DGV. These can be based on regularized linear regression in

marker models [1,3] or on relationship matrices between

individuals calculated using genomic information [4,5,6]. The

latter is commonly known as the genomic best linear unbiased

prediction (G-BLUP) method. Usually one assumes the same

variance in all loci, treats them all as equally important, and builds

a genomic relationship matrix (G) via genomic similarity between

individuals.

Various G matrices have been proposed, with those in

VanRaden [5] and Yang et al. [6] being the most commonly

used in practice, differing in the manner in which allele

frequencies of markers are handled. Several studies showed that

G-BLUP performs as well as other models for many traits,

especially for those where the expression of the phenotype is

driven by many genes with a small effect each [7,8].

Initially, a limitation to this approach was that the G matrix

may not be positive definite, e. g., if there are animals with identical

genotypes (such as clones, monozygotic twins, or genotyping

errors). In these cases, the unique inverse of the G matrix, which is

a pre-requisite for most available software for running G-BLUP,

does not exist.

This problem has been overcome by blending G with the

pedigree-based numerator relationship matrix (A), or even with an

identity matrix (I); the former has been shown to provide more

accurate predictions than the latter. An ad hoc positive weight (l) is

used to form the linear combination lGz(1{l)A. In addition,

use of pedigree-based information, together with marker-based
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information, may improve genomic predictions because the SNP

information may not account for all additive genetic variance, and

it also allows utilizing data from genotyped and non-genotyped

individuals together, as proposed in the single step method of

Misztal et al. [9].

VanRaden [5] indicated that reliability (squared correlation) of

predictions increased only by 0.0002 when varying l from 0:95to

1:00. In addition, he showed that reliability was lower for l~0:90
than for l~1:00. Aguilar et al. [10] and Forni et al. [11] found

minor differences in DGV when using a weight between 0.95 and

0.98. Christensen and Lund [12] indicated that 1{l could be

interpreted as the relative contribution of infinitesimal effects

relative to the total additive variance, that is

1{l~
s2

a

s2
gzs2

a

,

where s2
g is the variance explained by the markers, and s2

a is the

variance due to the infinitesimal effects.

The weight applied to each matrix should be carefully

considered as it may depend on circumstances specific to each

particular case, such as genotype density, amount of incorrect or

missing pedigree available, genetic architecture and heritability of

the trait, and number of animals and phenotypes used in the

evaluation. Therefore, global recommendations on the weights

assigned to G and A should be taken with care because these may

not suit every population or trait. The choice of l should be made

using a proper statistical assessment of the weights applied to each

matrix, instead of employing ad hoc weights based on small

differences observed between so-called ‘sensible’ values of l.

Another important factor to take into account when combining

marker- and pedigree-based relationship matrices is that marker-

and pedigree-based relationship matrices may not be on the same

scale. A straightforward reason is that allele frequencies in the base

population are unknown in livestock or humans, and the

adjustments proposed by VanRaden [5], Yang et al. [6] or

Vitezica et al. [13] do not translate G and A to the same base and

scale [14].

These problems can be overcome by combining G and A
matrices with weights estimated properly. This study proposes a

novel method for estimating the weights for G and A in a semi-

parametric model using a Bayesian framework. The semi-

parametric model is a Reproducing Kernel Hilbert spaces (RKHS)

regression that allows combining G and A in a kernel matrix while

making weaker assumptions on the compatibility of both matrices.

The RKHS approach was first proposed by Gianola et al. [15]

and has been implemented in real data by other authors [16–20].

The Bayesian framework allows flexible estimation of l using

samples from conditional distributions in MCMC algorithms.

This article is organized as follows: the first section, Reproduc-

ing kernel Hilbert spaces, reviews RKHS in a genomic selection

context and discusses connections between RKHS and G-BLUP.

The section on weighting factor estimation describes the novel

approach for estimating the weight to be assigned to each matrix

in a Bayesian RKHS framework. In the data analysis section, the

proposed methodology is applied to a real data set representing a

large number of genotyped animals. Concluding remarks are

provided in the final section of the article.

Materials and Methods

Reproducing Kernel Hilbert Spaces Regression
Reproducing kernel Hilbert spaces regression [21] is a semi-

parametric approach that allows the inference of a given function

without making strong prior assumptions about functional form.

In the context of genomic selection a function on genotypes of

SNP markers is estimated to predict genomic-enhanced genotypic

values or breeding values if the kernel encodes additive effects

[4,16].

This method assumes that distances in an Euclidean space can

be represented via a kernel matrix reflecting distances between

objects (focal points) in a Hilbert space. In our case, the non-

parametric function is g(x), which is an unknown function of SNP

markers x. The semi-parametric model is

y~Xbzg(x)ze

and the penalized sum of squares has the form [21,22]:

J½g(x)jl�~1

2
½y{Xb{g(x)�0R{1½y{Xb{g(x)�zl

2
jjg(x)jj2H , ð1Þ

where b is a vector of nuisance parameters, X is an incidence

matrix, R is the residual covariance matrix and g(x) is as defined

earlier. The second term in this equation acts as a penalty, adding

up some deviance that depends on the value of an unknown

regularization parameter l. The term jjg(x)jj2H is a norm under a

Hilbert space. The penalty can be made more complex if several

kernels are fitted simultaneously [23].

Kimeldorf and Wahba [24] found that the function g(x) that

minimizes (1) admits the following representation:

g(x)~a0z
Xn

i~1

aiK(x{xi),

where a~½a0, a1,:::, an�0 is a vector of unknown coefficients, and n

is the number of observations (in our case training genotyped

animals). In this implementation, the intercept a0 may be included

in the model as a population mean or nuisance parameter.

Further, K(x{xi) is a reproducing kernel used as basis function,

possibly depending on some smoothing parameter(s) h. The K
matrix may be based on any similarity function between

individuals, e. g., in a genomic selection scenario it is any function

of similarities based on markers. Here, the K~G matrix meets the

requisites of a kernel matrix, as it is positive semidefinite, defines

genomic similarities between genotyped individuals and meets the

distance requirements in a Hilbert space [25]. Hence, the non-

parametric function can be expressed as g(x)~Ga.

Embedding this expression in (1) the function to be minimized

becomes:

J½b,ajl�~1

2
½y{Xb{Ga�0R{1½y{Xb{Ga�zl

2
a0Ga,

After setting the gradients with respect to b and a to 0 [4,15,26],

the RKHS regression equations can be formulated in matrix form

as:

X0R{1
X X0R{1

G

GR{1X GR{1Gz 1
l{1 G

" #
b̂b
âa

� �
~

X0R{1
y

G0R{1
y

� �
, or pre-mul-

tiplying the second subsystem by G{1 we obtain
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X0R{1X X0R{1G

R{1X R{1Gz 1

l{1 I

" #
b̂b

âa

" #
~

X0R{1
y

R{1y

" #
:

Equivalently, the RKHS approach can be formulated in terms of

the random effects model:

y~XbzGaze,

with the non-parametric coefficients (a) and the residuals (e)

assumed to be independently distributed as ajleN(0,G�1s2
a) and

eeN(0, R), respectively, with s2
a~l{1 and l distributed as an

uniform (0,1) random variable (the latter being a Bayesian

assumption made here).

This may be viewed as a reparametrization of a G-BLUP

model, as shown by De los Campos et al. [27] where the DGV (u)

can be expressed as u~Ga. Both models are equivalent, leading to

the same solutions, as shown in Table 1, when ignoring nuisance

effects.

This reparametrization has two main advantages: (1) K~G
does not need to be inverted, and (2) prediction of genotyped

animals without phenotypes can be done by multiplying the

estimated non parametric coefficients times a rectangular

supporting matrix Ks~Gs containing the genomic similarities

(elements in the G matrix) between individuals used to infer the

non-parametric coefficients and the new individuals whose DGV

are to be predicted as

ûunew~Gsâa:

These two advantages offer a suitable framework for combining G
and A into a single kernel matrix, as described in the following

section.

Weighting factor estimation
Combining G and A in a joint analysis poses some difficulties as

stated previously. The semi-parametric RKHS is a suitable

framework for overcoming some of the issues, as the combination

of G and A may be interpreted as a single kernel matrix in a

scenario lacking parametric interpretation. The Bayesian ap-

proach allows estimation of the weight given to each matrix. These

two matrices can be combined into a single kernel matrix

K~½lGz(1{l)A�, where l is the parameter to be estimated.

The model is as follows:

y~XbzKaze,

where y is the vector of phenotypic data (usually some sort of

adjusted progeny performance for sires), b is the vector of nuisance

variables assumed to be distributed as N(bj0,Is2
b), X is an

incidence matrix, K is the kernel matrix described above, a is the

vector of non-parametric coefficients assumed to be distributed as

aeN(0,K{1s2
a), with s2

a corresponding to the non-parametric

variance and s2
b is large to produce a reasonably ‘‘flat’’ normal

distribution. Here, residuals e were assumed to be distributed as

eeN(0,Is2
e), with s2

e being the residual variance.

The implementation of a hierarchical Bayesian model for

inferring model unknowns is described in Appendix S1.

To implement the inverse method for drawing l values from

equation 1 (Appendix S1), the most computational intensive

calculation is that of log lGz(1{l)Aj j. We overcame this by

previously calculating this determinant over a grid of 101 values of

l from 0 to 1 with increments of 0.01, and for 11 values of l from

0 to 1 with increments of 0.1 for N = 7,000 and N = 14,487

individuals in the training data set, respectively (see details in the

Data Analysis section). To set up the inverse approach, densities

for each value of l were obtained using increments of 0.0001. The

10,001 values of log lGz(1{l)Aj j required for these evaluations

were obtained by linear interpolation from the 101 or 11 explicitly

calculated determinants. These values are plotted in Figure 1. The

remaining parts of equation (1) from Appendix S1were not

computationally demanding. The value of log lGz(1{l)Aj j was

computed just once and utilized for all traits being evaluated.

Finally, drawing random values from the conditional (1) requires

again linear interpolation from the 10,001 values.

Data analysis
The method was evaluated with a real dataset consisting of a

large sample of genotyped individuals provided by the Euro-

Genomics Consortium. In most genomic evaluation models used

in animal breeding programs, genotyped sires are evaluated using

their daughters’ performance as phenotypes (usually known as the

reference population or training set), and genome-enhanced

prediction of young individuals (usually called prediction popula-

tion) are made based on their genomic relationship with animals in

the reference set.

An important question is the ability of the genome-based model

at predicting the future performance of the progeny of these young

sires. We set out a cross-validation scheme using the model above

to check its predictive ability, and compared it with the model run

at different values of lambda set ad hoc: 0. 01 (approximately

equivalent to traditional BLUP using only genealogical informa-

tion), 0.25, 0.50, 0.75 and 0.99 (the latter being approximately

equivalent to G-BLUP using only genomic information).

Genomic and genealogical information. Data from

18,446 EuroGenomics progeny-tested sires was used in this study.

The Bovine 50K chip (Illumina inc., San Diego) was used to

genotype 54,609 SNPs in each sire. SNPs with an incidence of

missing genotypes across individuals greater than 5%, or SNPs

Table 1. Reparameterization of the Bayesian RKHS (reproducing kernel Hilbert spaces) and the G-BLUP. Adapted from De los
Campos et al. [27].

Bayesian RKHS Reparametrization I G-BLUP Reparametrization II

Equations in the linear model Gz
s2

e

s2
a
I

h i
âa~y Iz

s2
e

s2
a
G{1

h i
ûu~y

Breeding value prediction Gâ û

A priori distribution of the genomic effects a ~N(0,G�1s2
a) u ~N(0,Gs2

a)

doi:10.1371/journal.pone.0093424.t001
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with minor allele frequency less than 5% were discarded, leaving

36,971 SNP for the analyses. After editing, 0.01% of the SNP

genotypes were missing. These genotypes were then imputed with

Beagle 3.3.2 (see Jiménez-Montero et al. [28] for more details).

Pedigree data from 46,559 animals was used. This genealogical

information included four generations of ancestors related to the

genotyped individuals. In this study, the additive relationship

matrix (A) obtained from genealogical information was construct-

ed using the algorithm of Meuwissen and Luo [29], which is

implemented in the software Pedig [30]. In addition, the most

often employed genomic relationship matrix (G) [5,6] was also

calculated. The genomic relationship between individuals i and j

was calculated as

Gij~
1

L

XL

k~1

(gik{p̂pk)(gjk{p̂pk)

p̂pk(1{p̂pk)

where gik refers to the allele frequency value genotypes in AA, Aa

and aa, coded as 1, 0.5 and 0, respectively, of individual i at locus k

where i = 1, …, n and k = 1, …, L. The estimate of the allele

frequency in the sample is denoted as p̂pk. The two matrices (A and

G) were combined into a kernel matrix (K), as described in the

previous section.

Phenotypic information. Sire deregressed proofs (DRP) for

five traits were used as phenotypic values. The traits included 3

production traits: milk yield (MY), fat yield (FY) and protein yield

(PY), and 2 type traits: foot angle (FA) and udder depth (UD).

Training and testing data sets. The gain in predictive

ability was assessed by cross-validation. Sires were divided into two

groups, a training and a testing data set, according to year of birth.

The January 2009 DRP was used as response variable in the

training set, whereas, December 2011 DRP was used as a

prediction target in the testing set. The testing data set included

only sons of sires in the training set. This classification gave 14,487

training bulls born before 2005 and 3,959 testing bulls born after

2005. The minimum number of effective daughter contribution

(EDC) allowed per sire was 20. Design of the training and testing

data sets followed recommendations of Mäntysaari et al. [31].

In order to evaluate the behavior of the inferred weight on

pedigree- and marker-based matrices, and also to assess the

amount of information needed to improve genomic predictions, a

random subset (N = 7,000) from the previously defined training

data set was also employed as a reference population.

The model was implemented using a Bayesian approach via the

Gibbs sampler. Each analysis was based on a chain of 25,000

iterations, with the first 10,000 iterations discarded as burn-in.

There were 15,000 samples used for posterior inference, obtained

by collecting each iteration from the chain following the burn-in.

Criteria for comparisons. The reliability of the genome-

based predictions was assessed using the predicted direct genomic

values (DGV) of bulls in the testing set and their December 2011

DRP. Three metrics were used: (1) Pearson’s correlation

coefficient, (2) the regression coefficient of the realized DRP on

the estimated DGV, and (3) the mean squared error of predictions.

Results and Discussion

Figure 2 illustrates the large amount of uncertainly in the

posterior density of the weight for the traits evaluated when

N = 14,487. The posterior density of the inferred weight was very

similar for most traits evaluated. The exception was FA, where a

higher amount of uncertainly was detected, probably due to the

smaller heritability of this trait. The posterior mean of the inferred

weight (l) also varied depending on the number of bulls in the

training set and also with the trait evaluated (Table 2). When all

available individuals were used as training set (N = 14,487) larger

values of l were obtained, given more weight to the genomic

information than in the situation where only 7,000 bulls were used

in the reference data set. In addition, the emphasis placed on

genomic information was larger in production traits than in type

traits, suggesting that most of the additive genetic variability in

production traits was captured by genomic relationships. Posterior

means of l for FA were much lower, possible due to low

heritability of the trait.

Correlation
Correlation coefficients when 7,000 or 14,487 bulls were used as

training data set are shown in Figure 3. In general, the trend was

similar for all traits evaluated, with longer predictive correlation

when the training sample was 14,487, as expected. When a larger

weight was given to the additive relationship matrix (l close to 0)

the correlation coefficient was lower than in situations where more

weight was given to genomic information (l close to 1). In

addition, the predictive correlation was virtually insensitive with

respect to l values between 0.5 and 1.

As noted above, the correlation coefficient with N = 14,487 was,

in general, larger in all situations than the correlations obtained

with the smaller data set (except for FA and l= 0.01, 0.25 and

0.5). For instance, the predictive correlation for UD when l was

fixed to 0.75 was 0.59 and 0.66 for N = 7,000 and N = 14,487,

respectively. Fixed l values did not lead to DGV predictions with

larger accuracy in the validation set (e. g., milk yield or udder

depth), because it provided larger bias in the predictions, with

larger mean squared error estimates, as shown below.

Over and under predictions
A regression coefficient of DRP in the testing set on genomic

predictions lower than one indicates an overestimation, whereas a

coefficient larger than one indicates an underestimation of the

target trait. Figure 4 shows the regression coefficients when 7,000

(dashed lines and squares) or 14,487 (solid lines and circles) bulls

were used in the training data sets. Most regressions were close to

one, matching variations in predicted and observed values. The

exceptions were FY and FA for l= 0.01 for N = 7,000, FY for

l= 0.01 and FA and l= 0.01, 0.25 and 0.5 for N = 14,487. In

addition, as l increased the slope was nearly one. Likewise, the

sampled values of l (large square and circle) were very close to

one, i. e., when more weight was given to the genomic information.

Results obtained with N = 14,487 bulls in the training data set

were analogous to those obtained with a reduced data set.

Figure 1. Approximated function of log lGz(1{l)Aj j for
different l with N = 7,000 and N = 14,487.
doi:10.1371/journal.pone.0093424.g001
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However, with more individuals in the training data set, the

regression coefficients obtained at different l values were closer to

one than in the situation with N = 7,000 individuals.

Mean squared error
The behavior of the mean squared error (Figure 5) for N = 7,000

and N = 14,487 was similar to the behavior of the correlation and

regression coefficients, that is, more weight to the genomic

information provided a smaller mean squared error. The

percentage of mean squared error reduction between l= 0.01

Figure 2. Posterior density of the inferred weight lfor the traits evaluated with N = 14,487. Notice the different scale for foot angle.
doi:10.1371/journal.pone.0093424.g002
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(mostly pedigree information) and the estimated l ranged between

30% and 51% for N = 7,000, and between 50% and 57% for

N = 14,487. The percentage change in mean squared error from

using the estimated l and l= 0.99 (mostly genomic information)

ranged between a reduction of 3% and an increase of 2%.

In addition, use of more individuals induced a smaller mean

squared error, and the reduction from 7,000 to 14,487 bulls was

6%–15% across traits. Interestingly, when more weight was given

to genealogical information, differences between the mean squared

error for N = 7,000 and N = 14,487 were smaller than when more

weight was given to genomic information. This behavior was also

detected for the correlation (Figure 3) but it was subtler for the

regression coefficient (Figure 4). Therefore, differences in mean

squared error across different fixed l values (Figure 5) were higher

than differences in correlation across different fixed l (Figure 3),

favoring the mean squared error as a criterion to discriminate

between models.

Liu et al. [32] investigated the impact of including an ad hoc

weight to infinitesimal effects on genomic predictions. These

authors used three different percentages (5%, 10% and 15%) of

infinitesimal variance relative to the total genetic variance. They

found that, for traits with larger heritability, e. g. production traits,

somatic cell score, stature and rump angle, the optimal weights

assigned to the infinitesimal variance appeared to be less than 5%.

For the conformation traits as rump width and body conditional

score, values of 10% or higher were ‘‘optimal’’. These authors also

indicated that the optimal weight differed among traits. Therefore,

trait specific weighting factors should be used in single step

blending methods and in G-BLUP models with an infinitesimal

effect. Gao et al. [33] indicate that a weighting factor of 0.40

reduced ‘‘bias’’, and weighting factors around 0.15–0.20 gave the

highest reliability.

Haile-Mariam et al. [34] estimated the proportion of variance in

daughter trait deviations of dairy bulls explained by 45,993 SNPs

for 29 traits in Australian Holstein-Friesian dairy cattle. They

compared these proportions to the proportion of variance in

daughter trait deviations explained by the additive relationship

matrix derived from the pedigree, as well as by the sum of

variances explained by both pedigree and marker information

when these were fitted simultaneously. Their results suggested that

the Bovine SNP50 array, widely used for genomic evaluations in

dairy cattle, does not capture 100% of the additive genetic

variation for 29 traits, with a range of 90% for milk yield to 32%

for fertility. When fitting genomic and pedigree relationships

simultaneously, the residual variance in daughter trait deviations

was smaller than when fitting either source of information

individually. They indicated that the proportion of genetic

variance accounted for by the genomic relationships could be

used to modify the blending equations used to calculate genomic

estimated breeding values from direct genomic breeding values

and parent average. Their results, from a validation population of

young dairy bulls, suggest that this modification can improve

reliability of genomic estimated breeding values by up to 5%.

Further research could be done with two different models where

the A and G matrices are fitted as single kernels. Results from a

model fitting A matrix alone for MY and N = 14,487 indicated

that the correlation, slope and mean squared error were 0.06, 0.09

and 712,763, respectively. Accordingly, results for l= 0.01 were

0.13, 1.87 and 543,066 for the correlation, slope and mean

squared error respectively. Results for the remaining traits and

N = 7,000 where equivalent to those for MY and N = 14,487 (data

not shown). Regarding fitting G alone, several methods have been

proposed to make inferences with the genomic matrix positive

definite [35]. The mixed model equations can be modified to cope

with non-singular relationship matrices or the non-singular

relationship matrices can be transformed into positive definite by

adding a positive number to their diagonal. However, it is

expected that results will be very similar to those showed for

l= 0.99.

A multi-kernel approach was proposed by De los Campos et al.

[23] with G and A acting as two different kernels with

corresponding variance components. The multi-kernel approach

and that described herein are expected to lead to equivalent

models if the ‘true’ value of lambda is used, as described in Garcı́a-

Cortés and Toro [36]. Nonetheless, further research could be done

to compare the method proposed in the present study and the

multi-kernel approach proposed by De los Campos et al. [23].

Conclusions

This study proposed and evaluated a semi-parametric Bayesian

method for combining marker- and pedigree-based information in

genomic predictions involving a large reference population. The

advantage of using both sources of information is that QTL effects

not captured by SNP effects might be captured by a parental

average or by infinitesimal additive effects, especially if the

population genotyped is not large enough.

Results indicated that production traits showed a larger

influence from genomic information than type traits. This could

be related to heritability of the trait, because larger estimates of l
were associated with larger values of heritability (h2 = 0.28, 0.28,

0.28, 0.12 and 0.30 for MY, FY, PY, FA and UD, respectively).

The heritability is relevant in genomic predictions, the lower

heritability the larger number of records is required in the

reference population to achieve high accuracies of GEBV in

unphenotyped animals. Our results indicated a greater accuracy of

genomic predictions when using 14,487 bulls than when 7,000

randomly chosen bulls were employed as reference population.

The reason is that, when more phenotypic records are available,

Table 2. Posterior mean of the inferred lambda for each trait evaluated and reference population size.

Reference population size

Trait 7,000 14,487

Milk yield 0.92 0.96

Fat yield 0.93 0.96

Protein yield 0.97 0.98

Foot angle 0.62 0.72

Udder depth 0.92 0.95

doi:10.1371/journal.pone.0093424.t002
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unknown parameters are better estimated, leading to a larger

accuracy of genomic selection. In dairy cattle, gains from genomic

selection are seemingly larger for production than for fertility

traits, in part due to the lower accuracy of estimated breeding

values for fertility. The inferred weight also depends on the

number of bulls in the training set. A higher number of bulls in the

reference population produced a larger value of l, giving more

weight to genomic information. In addition, the emphasis placed

Figure 3. Correlation of predictions. Dashed lines and small squares represent fixed weights with N = 7,000. Solid lines and small circles represent
fixed weights with N = 14,487. The large square represents the sampled weight for N = 7,000. The large circle represents the sampled weight for
N = 14,487.
doi:10.1371/journal.pone.0093424.g003

Genomic and Genealogical RKHS Model

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e93424



on genomic information was larger in production traits than in

type traits, suggesting that most of the additive genetic variability

in production traits can be captured by genomic relationships.

We have shown that fitting a weight on pedigree- and marker-

based information in a genome-enabled prediction model is

beneficial. The optimal weight differs between traits. The size of

the reference population is an important factor affecting the

accuracy of genome-based predictions. Our study has also shown

that SNP based evaluation is more efficient than standard genetic

evaluation based on pedigree.

Figure 4. Slope of predictions. Dashed lines and small squares represent fixed weights with N = 7,000. Solid lines and small circles represent fixed
weights with N = 14,487. The large square represents the sampled weight for N = 7,000. The large circle represents the sampled weight for N = 14,487.
The optimum value is one.
doi:10.1371/journal.pone.0093424.g004
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